

#### Bounded lookahead in quantity insensitive stress assignment

Nate Koser Rutgers University RULing XV

# Introduction

- In iterative stress languages, stress is placed on every second or third syllable in the word
  - $\sigma\sigma\sigma\sigma\sigma\sigma\sigma\to \acute{\sigma}\sigma\acute{\sigma}\sigma\acute{\sigma}\sigma$
- What is the best characterization of these kinds of patterns?
- What formal properties do they share?

# Introduction

- Formal language theory (FLT) delineates classes of functions that serve as typological hypotheses for stress assignment
- Some previous "big-picture" FLT work on stress as a function (Hao & Andersson 2019; Koser & Jardine 2020)
- No treatment of iterative stress patterns in particular

# Results

- Typological split among iterative patterns less complex *output strictly* local (OSL) patterns<sup>1</sup> and more complex subsequential patterns<sup>2</sup>
- All more complex patterns share property of "look-ahead" despite surface differences
- If you separate the iteration of stress from the look-ahead, iterative patterns look the same
- More restrictive characterization of iterative stress

<sup>&</sup>lt;sup>1</sup> Chandlee & Heinz (2018) <sup>2</sup> Mohri (1997)

# Why this matters

- A step closer to answering the question what is the proper characterization of stress as a function  $?^1$
- Unites a group of patterns with surface differences based on their computational properties
- Bears on extra metricality  $^2$  and non-finality  $^3$
- Informative with regard to decomposition of subsequential functions

 $^1$  Koser & Jardine (2020)  $^2$  Liberman & Prince (1977)  $^3$  Prince & Smolensky (1993)

# Plan

- Background (FLT, stress)
- Complexity of the patterns
- Address the more complex patterns
- Implications

#### Complexity



- FLT complexity classes divide space of possible functions based on expressive power of those functions
- Phonology is *regular* (Johnson 1972; Kaplan & Kay 1994)
- In fact, most is subregular (Rogers et al. 2013; Heinz 2018)

# FLT and phonology

- Classes correspond to different phonological patterns; different information
- Input strictly local (ISL) functions  $^1$  bounded information in the input
  - Ex: initial stress:  $\#\sigma\sigma\sigma\sigma\sigma \to \#\sigma\sigma\sigma\sigma$
- Output strictly local (OSL) functions<sup>2</sup> bounded information in the output
  - Ex: binary stress:  $\#\sigma\sigma\sigma\sigma\sigma\sigma \rightarrow \#\sigma\sigma\sigma\sigma\sigma$
- Subsequential functions ^3 - information up to current input symbol, more powerful
  - Ex: LHOR stress:  $LLHL \rightarrow LLHL \rightarrow LLLLL \rightarrow LLLLL$

 $<sup>^1</sup>$  Chandlee (2014)  $^2$  Chandlee & Heinz (2018)  $^3$  Mohri (1997)

#### Stress

- Iterative binary quantity insensitive (QI) stress
  - binary: Murinbata<sup>1</sup>:  $\delta\sigma, \delta\sigma\delta, \delta\sigma\delta\sigma, \delta\sigma\delta\sigma\delta, \delta\sigma\delta\sigma\delta\sigma, \delta\sigma\delta\sigma\delta\sigma\delta$ ...
  - non-finality: Pintupi<sup>2</sup>:  $\delta\sigma, \delta\sigma\sigma, \delta\sigma\delta\sigma, \delta\sigma\delta\sigma\sigma, \delta\sigma\delta\sigma\delta\sigma, \delta\sigma\delta\sigma\delta\sigma$ ...
- What is the complexity of different iterative stress?

 $^1$  Street & Mollinjin (1981)  $^{-2}$  Hansen & Hansen (1969)  $^{-3}$  Kaye (1973)  $^{-4}$  Furby (1974)

#### Stress

- Given iterative patterns are OSL, adopt it as null hypothesis
- Stress as string-to-string mapping from input to output with finite state transducers (FST)
- Function classes have well-understood FST properties

#### Stress

• Properties of FSTs make properties of the function apparent

start 
$$\longrightarrow q_0 \xrightarrow{\sigma: \hat{\sigma}} q_1 \longrightarrow \sigma: \sigma$$

#### initial stress:

| $\sigma\sigma$                   | $\rightarrow$ | $\sigma\sigma$         |
|----------------------------------|---------------|------------------------|
| $\sigma\sigma\sigma$             | $\rightarrow$ | $\sigma \sigma \sigma$ |
| $\sigma\sigma\sigma\sigma\sigma$ | $\rightarrow$ | <u>ό</u> σσσ           |
| σσσσσ                            | $\rightarrow$ | <u>ό</u> σσσσ          |
| •••                              | $\rightarrow$ | •••                    |

# Binary: OSL

- Murinbata:  $\dot{\sigma}\sigma, \dot{\sigma}\sigma\dot{\sigma}\sigma, \dot{\sigma}\sigma\dot{\sigma}\sigma\dot{\sigma}\sigma, \dot{\sigma}\sigma\dot{\sigma}\sigma\dot{\sigma}\sigma, \dot{\sigma}\sigma\dot{\sigma}\sigma\dot{\sigma}\sigma\dot{\sigma}\sigma$ ...
- Placement of stress determined based on output, OSL



#### Non-finality: non-OSL

- Pintupi: *ό*σ, *ό*σσ, *ό*σ*ό*σ, *ό*σ*ό*σσ, *ό*σ*ό*σ*ό*σ, *ό*σ*ό*σ*ό*σ...
- Binary stress would stress final
- $\bullet$  Every odd syllable, needs to know am I at the end of the word?
- Requires lookahead (seen as "waiting"  $\lambda)$
- Lookahead not OSL, is subsequential

start 
$$\rightarrow q_0 \xrightarrow{\sigma: \hat{\sigma}} q_1 \xrightarrow{\sigma: \sigma} q_2 \xrightarrow{\sigma: \lambda} q_3: \sigma$$

# Clash: non-OSL

- Ojibwe:  $\sigma \dot{\sigma}, \sigma \dot{\sigma} \dot{\sigma}, \sigma \dot{\sigma} \sigma \dot{\sigma}, \sigma \dot{\sigma} \sigma \dot{\sigma} \dot{\sigma}, \sigma \dot{\sigma} \sigma \dot{\sigma} \sigma \dot{\sigma}, \sigma \dot{\sigma} \sigma \dot{\sigma} \dot{\sigma} \dot{\sigma}$ ...
- Binary stress would miss final stress
- Not OSL, is subsequential



# Internal lapse: non-OSL

- Binary stress (right to left) would stress penult
- Not OSL, is subsequential

# Taking stock

- Non-fin, clash, internal lapse patterns all subsequential
- All share property of lookahead
- Despite surface differences, similar computational properties

# Two functions

- Capture the similarity by separating the iteration of stress from the lookahead
- One OSL function that blindly iterates binary stress
- One ISL function that acts like lookahead by "cleaning up"
- Output of OSL is input of ISL, like rule ordering

#### Two functions: Non-fin

 $\sigma\sigma\sigma\sigma\sigma\sigma \rightarrow \sigma\sigma\sigma\sigma\sigma\sigma \rightarrow \sigma\sigma\sigma\sigma\sigma\sigma$ 

- $\sigma\sigma\sigma\sigma\sigma\sigma\sigma \rightarrow \sigma\sigma\sigma\sigma\sigma\sigma\sigma \rightarrow \sigma\sigma\sigma\sigma\sigma\sigma$
- OSL function stresses every odd syllable left-to-right
- ISL function removes final stress if present
- Iteration is like Murinbata



#### Two functions: Clash

- $\sigma\sigma\sigma\sigma\sigma\sigma \rightarrow \sigma\sigma\sigma\sigma\sigma\sigma \rightarrow \sigma\sigma\sigma\sigma\sigma\sigma$
- Every even syllable
- Add final stress if not present

start 
$$q_0 \xrightarrow{\sigma:\sigma} q_1$$
 start  $q_0 \xrightarrow{\sigma:\sigma} q_1 \xrightarrow{\sigma:\sigma} \sigma:\sigma$ 

#### Two functions: internal lapse

- Every even syllable (right-to-left)
- Add initial stress if not present and delete peninitial stress if present

start 
$$q_0 \xrightarrow{\sigma:\sigma} q_1$$
 start  $q_0 \xrightarrow{\sigma:\sigma} q_1 \xrightarrow{\sigma:\sigma} q_2 \xrightarrow{\sigma:\sigma} \sigma:\sigma$   
 $\sigma:\sigma \xrightarrow{\sigma:\sigma} \sigma:\sigma$ 

# Summary

- Separating the lookahead from the iteration highlights underlying similarity in patterns with surface differences
- Creates mini typology: some delete, some add, some delete and add

#### **Further Issues**

- ISL function is not just any arbitrary ISL function; only ever needs one or two input symbols (similar for OSL function)
- State some restriction on them. Restriction on the interaction ala McCollum et al. (2018)?
- Restrictions very important otherwise difference with subsequential function is unclear
- Without restrictions, can *any* subsequential function be broken down in this way?

#### **Further Issues**

- Similar in spirit to extra metricality  $^1$  and non-finality  $^2$  analyses
- More like non-finality, all syllables remain in computation
- Obviates need for function reattaching extrametrical syllables trade off
- Neither of the above apply to clash or internal lapse cases

 $<sup>^1</sup>$ Liberman & Prince (1977)  $^{\ 2}$  Prince & Smolensky (1993)

#### **Further Issues**

- Can this be extended somehow to othe stress cases?
  - bidirectional: Cahuilla<sup>1</sup>: Stress every other syllable in both directions, starting at the root-initial syllable
  - ternary?
  - quantity sensitive languages?

 $<sup>^{1}</sup>$  Seiler (1977)

#### Thanks

Thanks to the Adams for their helpful comments, and thank you for listening!

#### References

Chandlee, J. (2014). Strictly Local Phonological Processes. PhD thesis, University of Delaware.

Chandlee, J., & Heinz, J. (2018). Strict locality and phonological maps. Linguistic Inquiry, 49, 23–60.

Furby, C. (1974). Garawa phonology, vol. Series A. Australian National University: Pacific Linguistics.

Hansen, K., & Hansen, L. E. (1969). Pintupi phonology. Oceanic Linguistics, 8, 153–170.

Hao, S., & Andersson, S. (2019). Unbounded stress in subregular phonology. Proceedings of SIGMORPHON 16.

Heinz, J. (2018). The computational nature of phonological generalizations. In L. M. H. . F. Plank (Ed.) *Phonological typology*. Berlin & Boston: De Gruyter Mouton.

Johnson, D. (1972). Formal aspects of phonological description.

Kaplan, R., & Kay, M. (1994). Regular models of phonological rule systems. Computational Linguistics, 20, 331–378.

Kaye, J. (1973). Odawa stress and related phenomenon. Odawa Language Project: Second report.

Koser, N., & Jardine, A. (2020). Stress assignment and subsequentiality. Proceedings of AMP 2019.

- Liberman, M., & Prince, A. (1977). On stress and linguistic rythym. Linguistic Inquiry, 8.2, 249–336.
- McCollum, A., Bakovic, E., Mai, A., & Meinhardt, E. (2018). The expressivity of segmental phonology and the definition of weak determinism. ling.auf.net/lingbuzz/004197.
- Mohri, M. (1997). Finite-state transducers in language and speech processing. Computational Linguistics, 23, 269–311.
- Prince, A., & Smolensky, P. (1993). Optimality theory: constraint interaction in generative grammar. Ms, Rutgers University.
- Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., & Wibel, S. (2013). Cognitive and sub-regular complexity. In G. Morrill, & M.-J. Nederhof (Eds.) Formal Grammar, (pp. 90–108). Berlin, Heidelberg: Springer Berlin Heidelberg.

Seiler, H. (1977). Cahuilla Grammar. Banning, California: Malki Museum Press.

Street, C. S., & Mollinjin, G. P. (1981). The phonology of murinbata. Australian phonologies: Collected papers, (pp. 183–244).

#### 26