

Creaky voice in Yoruba

Nate Koser Rutgers University RULing XIV Spring 2019

Introduction

- The low tone in Yoruba carries creaky voice
- Series of two experiments confirms and expands previous results
- Show that this holds in different kinds of words/syllable positions; CV and CVCV
- Places Yoruba in growing body of evidence that boundary between "tone" and "register" languages is a fuzzy one

Plan

- Give background
- Go through experiment one CV
- Go through experiment two CVCV
- Discussion

Creaky voice

- Mode of phonation with glottal folds drawn closely together
- Irregular pitch periods and lower intensity in waveforms (Ladefoged 1971; Laver 1980)
- Lower F0, irregular F0, low spectral tilt (Laver 1980; Klatt & Klatt 1990)
- Known to the layman as "vocal fry" (though (Keating et al. 2015) shows that this is slightly different)

Creaky voice and tone

- In tone languages with non-modal phonation, often associated to a particular tone category
 - Pitch perceptually primary, consistent differences in phonation (Mandarin (Davidson 1991), Cantonese (Yu & Lam 2014), Cham (Brunelle 2012))
 - Phonation perceptually primary, consistent differences in pitch (Burmese (Bradley 1982), Hmong (Huffman 1987))
- "Fuzzy boundary" between tone and register languages (Abramson & Luangthongkum 2009)

Creaky voice and tone

- Not just a property of E/SE Asian languages¹:
- Full phonation/tone contrast in Jalapa Mazatec (Mexico; Silverman et al. 1995; Ladefoged & Maddieson 1996):
 já "tree" já "he wears" já "he carries"
- Breathy low tone in Kalam Kohistani (Pakistan; Baart 1996)
- Is Yoruba in this range of langauges as well?

¹See Gordon & Ladefoged (2001) for a typological survey of non-modal phonation

Yoruba

- Yoruba: Niger-Congo language; 28 million speakers concentrated in Nigeria, Benin, Togo
- Three tone-levels (H, M, L)
- Mid tone considered "default", doesn't participate in tonal processes (Akinlabi 1985; Pulleyblank 1986)
- Low tone shows a falling contour in isolation or word finally, mid and high more stable (Connell & Ladd 1990)

Creaky voice and Yoruba

- Very limited reference to creaky voice in Yoruba
- Welmers (1974), p.109: "Low tone is ... very commonly associated with a creaky voice quality"
- Yu (2010) cites Welmers (1974)
- Hayward et al. (2004) only acoustic study addressing nonmodal phonation in Yoruba, find a distinctive creaky quality for low tones in CV words
- Given limited knowledge of this phenomenon, worth repeating

CV words

- 63 CV target words, all combinations of the seven vowels (/i e ε a \circ o u/), three tones (high, mid, low) with three initial consonants (/t n l/) x5 repetitions = 315 data points
- Frame sentence: So ____ le kan sí i

/sɔ ____ lɛ kã sí i/ Say ____ once more

• Presented with PsychoPy (Peirce 2007)

CV words

One speaker – 31M, lived in Nigeria until age of 26, here for school. Raised in bilingual Yoruba-English environment. Indicated that he spoke Yoruba "all the time" as a child and still uses it frequently. Reported no difficulties in speaking. Yoruba-speaking colleague was present and attested to the quality of the participant's speech and also engaged him in conversation in Yoruba before the task began.

CV words

- Took place in sound-attenuated booth at Phonology Laboratory at Rutgers Center for Cognitive Science using a Logitech H390 USB microphone headset attached to the researcher's laptop running Audacity audio recording software version 2.3.0 recording in mono at a project rate of 44100Hz.
- Segmentation done in Praat (Boersma 2001)
- Statistical analysis done in R (R Core Team 2017)

CV words: expectations

- Hypothesize that low tones have acoustic properties characteristic of creak, mid and high do not
- Quantify creak via:
 - Harmonic-to-Noise Ratio (HNR): measure in dB of F0 irregularity, lower is creakier
 - spectral tilt: degree to which intensity increases as frequency decreases, H1-H2, lower is creakier
- Keating et al. (2015) finds these to be most consistent indicators of creak

CV words: findings

	F0	HNR	spec tilt	duration
Н	149.39	17.84	7.91	0.26
	<i>6.44</i>	<i>4.15</i>	<i>3.43</i>	<i>0.04</i>
M	126.97	13.56	4.84	0.27
	6.37	7.22	2.30	<i>0.05</i>
L	98.48	0.71	-0.19	0.17
	5.08	<i>3.06</i>	4.73	<i>0.04</i>

CV words: findings

CV words: findings

- Linear mixed effects models as implemented in lme4() (Bates et al. 2015)
- HNR and spectral tilt as dependent variables, tone (and others) as independent variables, *block* and *word* in random effects structure

CV words: HNR

- HNR as dependent variable, tone and vowel as independent variables
- Significant difference between both low and mid tones ($\beta = 11.75, p < 0.001$) and low and high tones ($\beta = 15.76, p < 0.001$) with model $R^2 = 0.87$.
- Conclusion: low HNR reliably marks low tones as creaky in Yoruba CV words

CV words: spectral tilt

- Spectral tilt as a dependent variable, tone, vowel, and onset as independent variables
- Significant difference between both low and mid tones ($\beta = 5.22, p < 0.001$) and low and high tones ($\beta = 8.30, p < 0.001$) with model $R^2 = 0.55$.
- Conclusion: low spectral tilt reliably marks low tones as creaky in Yoruba CV words

CV words: remarks

- Results suggest a creaky quality for low tone absent from mid or high tone
- Low HNR, low spectral tilt
- Consistent with Hayward et al. (2004)
- Question: Is this a true effect or an artifact of some other factor? Frame sentence? Falling L contour?

CV words: remarks

CVCV words

- 81 CVCV target words, vowels (/i u a/), three tones (high, mid, low) with /n/ x5 repetitions = 324 data points
- Same frame sentence
- Two speakers (second speaker has similar profile), same location
- Marantz PMD660 recording device recording in mono with a Shure SM10A head-worn microphone

CVCV words: findings

F0			HNR		SpecTilt	
Н	Syll1	Syll2	Syll1	Syll2	Syll1	Syll2
	170.66	163.84	18.03	13.95	-0.42	3.05
	<i>18.38</i>	<i>21.70</i>	<i>3.87</i>	<i>6.39</i>	7.17	5.89
M	149.59	144.56	19.29	17.55	-3.52	-0.77
	<i>16.21</i>	<i>16.40</i>	<i>3.87</i>	<i>3.86</i>	7.59	<i>9.69</i>
L	111.98	118.49	2.76	1.42	-3.90	-2.65
	<i>10.01</i>	<i>19.13</i>	<i>6.31</i>	3.75	7.17	<i>6.97</i>

CVCV words: findings

CVCV words: HNR

- HNR as dependent variable, tone and vowel as independent variables
- Significant difference between low and mid tones and low and high tones in both the first (mid β = 16.50, p < 0.001 high β = 15.24, p < 0.001, R^2 = .78) and second syllables (mid β = 16.06, p < 0.001 high β = 12.34, p < 0.001, R^2 = .75)
- Conclusion: low HNR reliably marks low tones as creaky in Yoruba words

CVCV words: spectral tilt

- spectral tilt as dependent variable, tone as independent variables
- Significant difference between low and high tones in first syllable (β = 3.26, p < 0.001) but not low and mid tones (β = 0.14, p = 0.7)
- Same in second syllable, high: ($\beta=4.60, p<0.001),$ mid: ($\beta=0.96, p=0.07)$

CVCV words: remarks

- Spectral tilt less reliable as a measure of creak in low tones
- Possibilities:
 - nVnV words, nasal cavity damps higher frequencies, could affect values
 - Speaker variation
 - Syllable position

CVCV words: remarks

- HNR most robust acoustic reflex of creak in Yoruba
- Not a factor of position both syllables show similar HNR values
- Holds across speakers
- Remaining questions to pursue?

CVCV words: tone sequence

- Tone sequence: creakiness in LL vs. LM, LH and vs. ML, HL
- LL vs. LM vs. LH, no significant difference between LL and LH ($\beta = -0.27, p = 0.7$), statistically significant difference between LL and LM ($\beta = 3.73, p < 0.001$)
- LL vs. ML vs. HL, no significant difference between LL and ML ($\beta = 0.13, p = 0.8$), statistically significant difference between LL and HL ($\beta = 5.02, p < 0.001$)

CVCV words: remarks

Discussion

- Yoruba low tone has creaky character best quantified with HNR
- Creakiness in first vs. second syllable significant difference?
- Other reliable acoustic measures?
- Perception?
- More speakers?

Thanks!

Thanks to my very helpful QP committee and everyone else who helped at some point!

References

- Abramson, A., & Luangthongkum, T. (2009). A fuzzy boundary between tone language and voice-register languages. In Frontiers in Phonetics and Speech Science, (pp. 149–155). The Commercial Press, Beijing, China.
- Akinlabi, A. (1985). Tonal underspecification and Yoruba tones. Ph.D. thesis, Nigeria: University of Ibadan.
- Baart, J. L. (1996). Tone rules in kalam kohistani (garwi, bashkarik. Bulletin of the School of Oriental and African Studies, 62, 88–104.
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48.
- Boersma, P. (2001). Praat, a system for doing phonetics by computer. Glot International, 5:9/10, 341-345.
- Bradley, D. (1982). Register in burmese. In D. Bradley (Ed.) *Papers in South-East Asian Linguistics 8: Tonation*, (pp. 117–132). Canberra: The Australian National University.
- Brunelle, M. (2012). Dialect experience and perceptual integrality in phonological registers: Fundamental frequency, voice quality and the first formant in cham. *Journal of the ASA*, 131, 3088–3102.
- Connell, B., & Ladd, D. R. (1990). Aspects of pitch realisation in yoruba. *Phonology*, 7(1), 1–29.
- Davidson, D. (1991). An acoustic study of so-called creaky voice in tianjin mandarin. UCLA Working Papers in Phonetics, 78, 50–57.
- Gordon, M., & Ladefoged, P. (2001). Phonation types: a cross-linguistic review. Journal of Phonetics, 29, 383-406.
- Hayward, K., Watkins, J., & OyÃĺtÃądÃľ, A. (2004). The phonetic interpretation of register: evidence from yorÃźbÃą. In J. Local, R. Ogden, & R. Temple (Eds.) *Phonetic Interpretation: Papers in Laboratory Phonology VI*, Papers in Laboratory Phonology, (p. 305âĂŞ321). Cambridge University Press.
- Huffman, M. (1987). Measures of phonation type in hmong. Journal of the Acoustical Society of America, 81, 495–504.

Keating, P., Garellek, M., & Kreiman, J. (2015). Acoustic properties of different kinds of creaky voice.

- Klatt, D., & Klatt, L. (1990). Analysis, synthesis, and perception of voice quality variations among female and male talkers. J. Acoust. Soc. Am., 87, 820–857.
- Ladefoged, P. (1971). Preliminaries to linguistic phonetics.
- Ladefoged, P., & Maddieson, I. (1996). The sounds of the world's langauges.
- Laver, P. (1980). The phonetic description of voice quality.
- Peirce, J. (2007). Psychopy pyschophysics software in python. Journal of Neuroscience Methods, 162 (1-2), 8–13.
- Pulleyblank, D. (1986). Tone in Lexical Phonology. Ph.D. thesis, Reidel, Dordrecht.
- R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
- Silverman, D., Blankenship, B., Kirk, P., & Ladefoged, P. (1995). Phonetic structures in jalapa mazatec. Anthropolog. Linguist., 37, 70–88.
- Welmers, W. (1974). African Language Structures. University of California Press.
- Yu, K., & Lam, H. W. (2014). The role of creaky voice in cantonese tonal perception. Journal of the Acoustical Society of America, 136(3), 1320–1333.
- Yu, K. M. (2010). Laryngealization and features for chinese tonal recognition.