

# The complexity of optimizing over strictly local constraints

Nate Koser and Adam Jardine Rutgers University PLC 43 Spring 2019

1

# Introduction

- In Optimality Theory (Prince & Smolensky 1993), the interaction of local constraints can produce non-local, pathological patterns
- Use categories of patterns provided by Formal Language Theory (FLT) to contrast attested patterns with unattested ones
- Analyze a typology of stress constraints, but property of OT grammars is general potentially true of *any* set of local constraints

# Introduction

• Pathological pattern is novel "sour grapes"-like stress pattern from local markedness constraints only

```
σ
(σσ)
σσσ
(σσ)(σσ)
σσσσσ
(σσ)(σσ)(σσ)
σσσσσσσ
```

. . .

• Tells us that restricting CON in some way is no guarantee of a typology with matching complexity

# Plan

- Background
- Introduce the constraint set
- Explore the pattern in detail
- Show how and why the pattern is pathological
- Discuss implications

#### FLT

- Formal languages describe stringsets that are extensions of the grammar, ex.  $*ab = \{a, aa, bb, ba, baa, ...\}$
- Can think of constraints this way as well: Troch =  $\{(\sigma \sigma), (\sigma \sigma)\sigma, ...\}$
- Phonological patterns: "final devoicing" informally describes set of strings that are well formed with regard to the generalization of the pattern

# Measuring Complexity

- Can use principles of formal language theory to measure com-plexity of natural language patterns
- What kind of FLT grammar describes a phonological pattern? A local one like \*ab? Something more powerful?
- Gives us rigorously-defined notion of what a possible phonological generalization is

# Measuring Complexity



- Chomsky Hierarchy of formal langauges; division of space of possible grammars based on expressive power of those grammars
- Phonology is *regular* (Rogers et al. 2013; Heinz 2018): expect phonological patterns to fall within the blue region
- Something intuitively non-phonological about center embedding, FLT tells us exactly why

# Measuring Complexity



- Most phonological patterns are *sub-regular* (Heinz 2018), part of some even more restricted class
- Strictly Local (SL) class (McNaughton & Papert 1971; Rogers & Pullum 2011) at very bottom, formalize what we mean by "local"

# Strictly Local

- SL class definable with conjunctions of negative literals (CNLs), where literals are substructure:  $\neg s_1 \land \neg s_2 \land \dots s_n$
- Statements forbidding contiguous substructures, no requirement of structure
- Relevant to markedness constraints in OT, overwhelmingly negative i.e. ban certain structures
- Example: TROCH, bans iambs and unary feet  $\neg (\sigma \acute{\sigma}) \land \neg (\acute{\sigma})$

# **SL** Constraints

- Will define constraints as strictly local
- Use SL as the Constraint Definition Language (CDL) (Eisner 1997; de Lacy 2011; Jardine & Heinz 2016) for stress markedness constraints
- Strong prediction that markedness constraints forbid local structures only
- Cannot write constraints of a higher complexity ex. FIRSTANDLAST - "stress the last syllable if the first syllable is stressed"

# **SL** Constraint Interaction

- McNaughton & Papert (1971): SL stringsets *closed* under intersection: intersection of two SL stringsets is guaranteed to result in SL stringset
- no jump to higher level of complexity
- can ask same question of optimization in OT:
  - if optimization is how constraints (stringsets) interact, is there the same kind of complexity class closure?
- No.



- Natural language stress patterns are overwhelmingly *star free* (SF) (Rogers et al. 2013)
- Sour grapes pattern examined here is not it is fully regular
- Again, FLT provides explanation as to why pattern seems unnatural let's see how it arises

#### GEN

- Consider strings of syllables unstressed  $\sigma$ , stressed  $\dot{\sigma}$ , unparsed  $\ddot{\sigma}$ , and foot boundaries right ), and left (
- $(\acute{\sigma}\sigma)\breve{\sigma}\breve{\sigma}\breve{\sigma}$  or  $(\acute{\sigma}\sigma)(\acute{\sigma}\sigma)(\acute{\sigma}\sigma)$
- No superbinary feet (this requirement is SL)
- Allow stressless strings; obligatoriness (requiring at least one stress) Locally Testable; Rogers et al. (2013)

- Defined with CNL logic
- Count number of violations number of ill-formed structures
- Troch:  $\neg~(\sigma \acute{\sigma}) \land \neg~(\acute{\sigma})$ 
  - Violated by strings  $\breve{\sigma}(\sigma \acute{\sigma})$  and  $(\acute{\sigma})(\sigma \acute{\sigma})$
  - Unviolated by strings  $\breve{\sigma}\breve{\sigma}(\acute{\sigma}\sigma)$  and  $(\acute{\sigma}\sigma)(\acute{\sigma}\sigma)$
- Defined over alphabet  $\boldsymbol{\Sigma} = \{(,),\sigma, \acute{\sigma}, \breve{\sigma}\}$

Constraint set:

IAMB violated by trochees and unary feet;  $\neg (\sigma \sigma) \land \neg (\sigma)$ TROCHEE violated by iambs and unary feet;  $\neg (\sigma \sigma) \land \neg (\sigma)$ PARSE violated by an unparsed syllable;  $\neg \sigma$  ${}^* \sigma F; \neg \sigma (\sigma \land \neg \sigma (\sigma)$  ${}^* F \sigma; \neg \sigma) \sigma \land \neg \sigma) \sigma$ 

- Basic stress constraints needed for a local theory of CON for stress
- All constraints from the literature with an explicit CNL definition
- Application of constraints consistent with use in literature

- $\check{\sigma}F$  and  $\check{F}\sigma$   $\neg \check{\sigma}(\sigma \wedge \neg \check{\sigma}(\acute{\sigma}) \quad and \quad \neg \sigma)\check{\sigma} \wedge \neg \acute{\sigma})\check{\sigma}$   $\check{\sigma}F$   $(\acute{\sigma}\sigma)\check{\sigma}(\acute{\sigma}\sigma) \quad (\acute{\sigma}\sigma)(\acute{\sigma}\sigma) \quad \check{\sigma}(\acute{\sigma}\sigma) \quad \check{\sigma}(\acute{\sigma}\sigma) \quad \check{\sigma}(\acute{\sigma}\sigma) \quad \check{\sigma}(\acute{\sigma}\sigma) \quad \check{\sigma}(\acute{\sigma}\sigma))$  $\check{\sigma}(\acute{\sigma}\sigma)\check{\sigma}(\acute{\sigma}\sigma) \quad (\acute{\sigma}\sigma)(\acute{\sigma}\sigma)\check{\sigma} \quad (\acute{\sigma}\sigma)(\acute{\sigma}\sigma) \quad \check{\sigma}(\acute{\sigma}\sigma)(\acute{\sigma}\sigma) \quad \check{\sigma}(\acute{\sigma}\sigma)(\acute{\sigma}\sigma))$
- Motivate placement of feet
- Similar to  ${}^*\!Ft/_\sigma$  and  ${}^*\!Ft/_\sigma_$  discussed in McCarthy (2003); defined as CNLs

• Troch and Iamb  $\neg (\sigma \sigma) \land \neg (\sigma)$  and  $\neg (\sigma \sigma) \land \neg (\sigma)$ TROCH IAMB  $(\sigma \sigma)(\sigma \sigma) (\sigma \sigma)$  $(\sigma \sigma)(\sigma) (\sigma \sigma) (\sigma \sigma) (\sigma \sigma) (\sigma \sigma) (\sigma \sigma) (\sigma \sigma)$ 

- PARSE: constraint against unparsed syllables  $\neg \, \breve{\sigma}$ 

PARSE $(\dot{\sigma}\sigma)\ddot{\sigma}$  $(\dot{\sigma}\sigma)$  $(\dot{\sigma}\sigma)\ddot{\sigma}\ddot{\sigma}$  $(\dot{\sigma}\sigma)(\dot{\sigma}\sigma)$  $(\dot{\sigma}\sigma)\ddot{\sigma}\ddot{\sigma}\ddot{\sigma}$  $(\dot{\sigma}\sigma)(\dot{\sigma}\sigma)(\dot{\sigma})$ 

#### Typology

• Analysis in OTWorkplace (Prince et al. 2007-2017) reveals typology of 9 languages: 2 sour grapes languages, 1 stressless language, 2 ambiguous languages (more than one optimal output), 4 near-misses of attested patterns (iterating binary feet)

 Sour grapes is a pathology in harmony generated by some theories of assimilation in OT (Padgett 1995; Wilson 2003, 2006; McCarthy 2010)

sour grapes harmony:

\* +F -F -F -F -F +F +F +F +F +F +F -F -F  $B_F$  -F natural language harmony: \* +F -F -F -F -F

- If some feature cannot spread completely, candidate with no spreading wins instead

• Can generate similar pattern in stress with only SL markedness constraints

```
 \begin{split} \vec{\sigma} \\ (\vec{\sigma}\sigma) \\ \vec{\sigma}\vec{\sigma}\vec{\sigma} \\ (\vec{\sigma}\sigma)(\vec{\sigma}\sigma) \\ \vec{\sigma}\vec{\sigma}\vec{\sigma}\vec{\sigma}\vec{\sigma} \\ (\vec{\sigma}\sigma)(\vec{\sigma}\sigma)(\vec{\sigma}\sigma) \\ \vec{\sigma}\vec{\sigma}\vec{\sigma}\vec{\sigma}\vec{\sigma}\vec{\sigma}\vec{\sigma} \end{split}
```

. . .

 Pathological – no such extreme sensitivity to word length in natural language stress patterns

$$\begin{split} \vec{\sigma} \\ (\vec{\sigma}\sigma) \\ \vec{\sigma}\vec{\sigma}\vec{\sigma} \\ (\vec{\sigma}\sigma)(\vec{\sigma}\sigma) \\ \vec{\sigma}\vec{\sigma}\vec{\sigma}\vec{\sigma}\vec{\sigma} \\ (\vec{\sigma}\sigma)(\vec{\sigma}\sigma)(\vec{\sigma}\sigma) \\ \vec{\sigma}\vec{\sigma}\vec{\sigma}\vec{\sigma}\vec{\sigma}\vec{\sigma}\vec{\sigma} \end{split}$$

| input | winner                                       | loser                                          | $*\sigma F$ | $^*F\sigma$ | TROCH     | PARSE | IAMB |
|-------|----------------------------------------------|------------------------------------------------|-------------|-------------|-----------|-------|------|
| 3syll | ŏŏŏ                                          | $\breve{\sigma}(\acute{\sigma}\sigma)$         | W           |             | <br> <br> | L     | W    |
| 3syll | $\breve{\sigma}\breve{\sigma}\breve{\sigma}$ | $(\acute{\sigma}\sigma)\breve{\sigma}$         |             | W           | <br> <br> | L     | W    |
| 3syll | $\breve{\sigma}\breve{\sigma}\breve{\sigma}$ | $(\acute{\sigma}\sigma)(\acute{\sigma})$       |             | <br> <br>   | W         | L     | W    |
| 4syll | $(\dot{\sigma}\sigma)(\dot{\sigma}\sigma)$   | ŏŏŏŏ                                           |             | <br> <br>   | <br> <br> | W     | L    |
| 4syll | $(\sigma\sigma)(\sigma\sigma)$               | $(\sigma\sigma) \breve{\sigma} \breve{\sigma}$ | W           | <br> <br>   | <br> <br> | W     | L    |

•••

 $\breve{\sigma}$ 

. . .

| $\breve{\sigma}$ .                                             |       |                                                |                                          |                |             |       |       |      |
|----------------------------------------------------------------|-------|------------------------------------------------|------------------------------------------|----------------|-------------|-------|-------|------|
| $(\sigma\sigma)$<br>$\sigma\sigma\sigma$                       | input | winner                                         | loser                                    | $*_{\sigma F}$ | $^*F\sigma$ | Troch | PARSE | IAMB |
| $(\dot{\sigma}\sigma)(\dot{\sigma}\sigma)$                     | 3syll | $\breve{\sigma}\breve{\sigma}\breve{\sigma}$   | $\breve{\sigma}(\acute{\sigma}\sigma)$   | W              |             |       | L     | W    |
| σσσσσ                                                          | 3syll | $\breve{\sigma}\breve{\sigma}\breve{\sigma}$   | $(\acute{\sigma}\sigma)\breve{\sigma}$   |                | W           |       | L     | W    |
| $(\hat{\sigma}\sigma)(\hat{\sigma}\sigma)(\hat{\sigma}\sigma)$ | 3syll | $\breve{\sigma}\breve{\sigma}\breve{\sigma}$   | $(\acute{\sigma}\sigma)(\acute{\sigma})$ |                |             | W     | L     | W    |
|                                                                | 4syll | $(\acute{\sigma}\sigma)(\acute{\sigma}\sigma)$ | ŏŏŏŏ                                     |                | <br> <br>   |       | W     | L    |
|                                                                | 4syll | $(\sigma\sigma)(\sigma\sigma)$                 | $(\sigma\sigma) \sigma\sigma$            | W              |             |       | W     | L    |

- In odd-syllable forms, cannot satisfy  $\check{\sigma}F$  or  $\check{F}\sigma$  with binary feet
- Any unary feet violate TROCH
- In even syllable forms, full satisfaction of PARSE anything less incurs violations of higher ranked constraints



- Sour grapes-like stress pattern from markedness constraints only
- Arises from interaction of SL constraints, pattern is properly regular
- SL class is not closed under optimization

#### Not Star Free

- Sour grapes pattern discussed here is regular (see Appendix)
- Can also show is not star free, and thus unlike natural language stress patterns
- Alphabet change:  $\Sigma = \{(,),\sigma\}$
- Sour grapes-like language as a stringset:

$$L = \{\sigma, \\ (\sigma\sigma), \\ \sigma\sigma\sigma, \\ (\sigma\sigma)(\sigma\sigma), \\ \sigma\sigma\sigma\sigma\sigma\sigma, \\ (\sigma\sigma)(\sigma\sigma)(\sigma\sigma) \\ \sigma\sigma\sigma\sigma\sigma\sigma\sigma, \dots \}$$

,

#### Not Star Free

• Theorem 1 (McNaughton & Papert 1971)

-  $\exists n \text{ such that } \forall i \ uv^n w \in L \to uv^{n+i} w \in L$ 

• No string  $\sigma\sigma\sigma^{n}$  for even n, can use as target for  $uv^{n+i}w$ Odd  $n, i = 1, v = \sigma$   $uv^{n}w \in L \rightarrow uv^{n+i}w \in L$  n  $1 \sigma\sigma\sigma\sigma\sigma$   $3 \sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma \notin L$   $5 \sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma \notin L$  $\vdots$ 

- Can construct same argument for even n (see Appendix)

#### Not Star Free

- It is not the case that for all  $i \ge 1$ , there is an odd n or even n such that if  $uv^n w$  is a string of L then  $uv^{n+i}w$  is a string of L for all  $i \ge 1$
- Proves that Thm. 1 does not hold for the sour grapes-style pattern and thus that it is not SF

## Discussion

- A system of SL constraints that produced a fully regular pattern via interaction in OT
- Pattern was a novel sour grapes-type pattern in stress
- Have a CDL of the lowest level of formal language complexity

   no guarantee of a typology of matching complexity
- Constricting the constraint space in OT is not generally a viable strategy to avoid overgeneration
- Couched in stress but property of OT grammars in general potentially true of any SL OT grammar

# Future Work

- What happens with strictly piecewise constraints? Still CNL logic but adds precedence (non-local)
  - ALIGN-type constraints? Is e.g.  $ALIGN(F,R,Pwd,R,\sigma)$ writeable as SP constraint  $\neg$  )... $\sigma$ ...]<sub> $\omega$ </sub> and does this produce things like the *Midpoint Pathology* (Eisner 1997; Hyde 2012)
- What is the typology of CDLs with other levels of logic?

## Thanks!

Thanks to the audiences at NECPhon 2018, PhonX (Rutgers phonology reading group) and Bruce Tesar.



- Top path only accepting state after a binary foot has been read
- Bottom path only accepting state after an odd number of syllables and no foot boundaries have been read

#### Appendix: Not Star Free, Even n

Even  $n, i = 1, v = \sigma$ 

|   | $uv^nw \in L$ | $\rightarrow$ | $uv^{n+i}w \in L$                                    |
|---|---------------|---------------|------------------------------------------------------|
| n |               |               |                                                      |
| 2 | σσσσσ         |               | $\sigma\sigma\sigma\sigma\sigma\sigma\sigma\notin L$ |
| 4 | σσσσσσσσ      |               | $σσσσσσσσσ \notin L$                                 |
| 6 | σσσσσσσσσσ    |               | σσσσσσσσσσσ φ L                                      |
|   |               | •             |                                                      |

#### References

de Lacy, P. (2011). Markedness and faithfulness constraints. In The Blackwell Companion to Phonology. Blackwell.

- Eisner, J. (1997). What constraints should OT allow? Talk handout available online (22 pages), Linguistic Society of America (LSA).
- Heinz, J. (2018). The computational nature of phonological generalizations. In *Phonological typology*. Berlin & Boston: De Gruyter Mouton.
- Hyde, B. (2012). Alignment constraints. NLLT, 30, 789–836.
- Jardine, A., & Heinz, J. (2016). Markedness constraints are negative: an autosegmental constraint definition language. In K. Ershova, J. Falk, & J. Geiger (Eds.) *CLS 51*, (pp. 301–315).
- McCarthy, J. (2010). Autosegmental spreading in optimality theory. In *Tones and features*, (p. 195âĂŞ222). Berlin & Boston: De Gruyter Mouton.
- McCarthy, J. J. (2003). OT constraints are categorical. ROA-510.

McNaughton, R., & Papert, S. (1971). Counter-Free Automata. MIT Press.

- Padgett, J. (1995). Partial class behavior and nasal place assimilation. In *Proceedings of the 1995 Southwestern Workshop on Optimality Theory (SWOT)*, (pp. 145–183). Tuscon: Department of Linguistics, University of Arizona.
- Prince, A., & Smolensky, P. (1993). Optimality theory: constraint interaction in generative grammar. Ms, Rutgers University & University of Colorado, Boulder.

Prince, A., Tesar, B., & Merchant, N. (2007-2017). OTWorkplace. https://sites.google.com/site/otworkplace/.

Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., & Wibel, S. (2013). Cognitive and sub-regular complexity. In G. Morrill, & M.-J. Nederhof (Eds.) Formal Grammar, (pp. 90–108). Berlin, Heidelberg: Springer Berlin Heidelberg.

- Rogers, J., & Pullum, G. (2011). Aural pattern recognition experiments and the subregular hierarchy. *Journal of Logic, Language* and Information, 20, 329–342.
- Wilson, C. (2003). Analyzing unbounded spreading with constraints: marks, targets, and derivations.
- Wilson, C. (2006). Unbounded spreading is myopic.