

Strictly Local Patterns are not Closed Under Optimization

Nate Koser Rutgers University NECPhon Fall 2018

1

Introduction

- In Optimality Theory (Prince & Smolensky 1993), optimization over strictly local (McNaughton & Papert 1971) constraints can generate fully regular patterns
- Take SL to be the *Constraint Definition Language* (Eisner 1997b; Potts & Pullum 2002; de Lacy 2011) (CDL) for marked-ness constraints
- SL constraints bans on contiguous substructure: PARSE $\neg \breve{\sigma}$

Introduction

- Set of markedness-only stress constraints produces novel "sour grapes"-like stress pattern, importantly not SL
- Tells us that establishing a CDL is no guarantee of a typology with matching complexity

Roadmap

- Introduce the constraint set
- Explore the sour grapes pattern in detail
- Prove that the pattern is properly regular
- Discuss implications and future work

Questions

- When formally evaluating OT, some questions we can ask:
 - What is the complexity level of the CON constraints? (Eisner 1997c; Potts & Pullum 2002; Jardine & Heinz 2016)
 - What is the nature of the functions that can be described by OT grammars? (Eisner 1997a; Frank & Satta 1998; Riggle 2004; Buccola 2013); and:
 - Examine the outputs of these functions as *phonotactic* patterns: as formal languages.

GEN

- Consider strings of syllables unstressed σ , stressed $\dot{\sigma}$, unparsed $\ddot{\sigma}$, and foot boundaries right), and left (
- $(\acute{\sigma}\sigma)\breve{\sigma}\breve{\sigma}\breve{\sigma}$ or $(\acute{\sigma}\sigma)(\acute{\sigma}\sigma)(\acute{\sigma}\sigma)$
- No superbinary feet (this requirement is SL)
- Allow stressless strings; obligatoriness (requiring at least one stress) Locally Testable; Rogers et al. (2013)

- SL class definable with conjunctions of negative literals (CNLs), where literals are substructure: $\neg s_1 \land \neg s_2 \land \dots s_n$
- Statements forbidding contiguous substructures, no requirement of structure
- Relevant to markedness constraints in OT, overwhelmingly negative i.e. ban certain structures
- Example: TROCH, bans i ambs and unary feet $\neg \; (\sigma \acute{\sigma}) \land \neg (\acute{\sigma})$

- Strong prediction that markedness constraints are local only
- Banishes more complex constraints from CON
- ALIGN-type constraints (McCarthy & Prince 1993); more powerful, produce pathological patterns (Eisner 1997b; Hyde 2012)

- Defined with CNL logic
- Count number of violations number of ill-formed structures
- Troch: $\neg~(\sigma \acute{\sigma}) \land \neg~(\acute{\sigma})$
 - Violated by strings $\breve{\sigma}(\sigma \acute{\sigma})$ and $(\acute{\sigma})(\sigma \acute{\sigma})$
 - Unviolated by strings $\breve{\sigma}\breve{\sigma}(\acute{\sigma}\sigma)$ and $(\acute{\sigma}\sigma)(\acute{\sigma}\sigma)$
- Defined over alphabet $\Sigma = \{(,),\sigma, \acute\sigma, \breve\sigma\}$

Constraint set:

IAMB violated by trochees and unary feet; $\neg (\sigma \sigma) \land \neg (\sigma)$ TROCHEE violated by iambs and unary feet; $\neg (\sigma \sigma) \land \neg (\sigma)$ PARSE violated by an unparsed syllable; $\neg \sigma$ ${}^* \sigma F; \neg \sigma (\sigma \land \neg \sigma (\sigma)$ ${}^* F \sigma; \neg \sigma) \sigma \land \neg \sigma) \sigma$

- $\check{\sigma}F$ and $\overset{*}F\check{\sigma}$ $\neg\check{\sigma}(\sigma \wedge \neg\check{\sigma}(\acute{\sigma}) \quad and \quad \neg\sigma)\check{\sigma} \wedge \neg\sigma)\check{\sigma}$ $\check{\sigma}F$ $(\acute{\sigma}\sigma)\check{\sigma}(\acute{\sigma}\sigma) \quad (\acute{\sigma}\sigma)(\acute{\sigma}\sigma) \quad (\acute{\sigma}\sigma)\check{\sigma}(\acute{\sigma}\sigma) \quad \check{\sigma}(\acute{\sigma}\sigma))$ $\check{\sigma}(\acute{\sigma}\sigma)\check{\sigma}(\acute{\sigma}\sigma) \quad (\acute{\sigma}\sigma)(\acute{\sigma}\sigma)\check{\sigma} \quad (\acute{\sigma}\sigma)(\acute{\sigma}\sigma)$
- Motivate placement of feet
- Similar to ${}^*\!Ft/_\sigma$ and ${}^*\!Ft/_\sigma_$ discussed in McCarthy (2003); defined as CNLs

• Troch and Iamb $\neg (\sigma \sigma) \land \neg (\sigma)$ and $\neg (\sigma \sigma) \land \neg (\sigma)$ TROCH IAMB $(\sigma \sigma)(\sigma \sigma) (\sigma \sigma)$ $(\sigma \sigma)(\sigma) (\sigma \sigma) (\sigma \sigma) (\sigma \sigma) (\sigma \sigma) (\sigma \sigma) (\sigma \sigma)$

- PARSE: constraint against unparsed syllables $\neg \, \breve{\sigma}$

PARSE $(\dot{\sigma}\sigma)\ddot{\sigma}$ $(\dot{\sigma}\sigma)$ $(\dot{\sigma}\sigma)\ddot{\sigma}\ddot{\sigma}$ $(\dot{\sigma}\sigma)(\dot{\sigma}\sigma)$ $(\dot{\sigma}\sigma)\ddot{\sigma}\ddot{\sigma}\ddot{\sigma}$ $(\dot{\sigma}\sigma)(\dot{\sigma}\sigma)(\dot{\sigma})$

- All constraints from the literature with an explicit CNL definition
- Application of constraints consistent with use in literature

Typology

• Analysis in OTWorkplace (Prince et al. 2007-2017) reveals typology of 9 languages: 2 sour grapes languages, 1 stressless language, 2 ambiguous languages (more than one optimal output), 4 near-misses of attested patterns (iterating binary feet)

- Sour grapes phenomena in harmony, spreading, and tone (Padgett 1995; Wilson 2003, 2006; McCarthy 2010; Jardine 2016)
- If some feature cannot spread completely, candidate with no spreading wins instead
- Canonically involves markedness-faithfulness interaction (AGREE vs. IDENTIO(F))
- Here there are only CNL markedness constraints

. . .

- Want to build binary feet to the end; if this can't be done, build no feet instead. No "spread" of feet in odd-syllable forms
- Pathological no such extreme sensitivity to word length in natural language stress patterns

. . .

input	winner	loser	$*_{\sigma F}$	$^*F\sigma$	Troch	PARSE	IAMB
3syll	ŏŏŏ	$\breve{\sigma}(\acute{\sigma}\sigma)$	W			L	W
3syll	ŏŏŏ	$(\sigma \acute{\sigma}) \breve{\sigma}$		W		L	W
1syll	$\breve{\sigma}$	$(\acute{\sigma})$			W	L	W
2syll	$(\acute{\sigma}\sigma)$	$\breve{\sigma}\breve{\sigma}$				W	L

 $\breve{\sigma}$

. . .

$\breve{\sigma}$								
$ \begin{array}{c} (\dot{\sigma}\sigma) \\ \ddot{\sigma}\breve{\sigma}\breve{\sigma} \\ (\dot{\sigma}) \end{array} $	input	winner	loser	$*_{\sigma F}$	$^*F\sigma$	Troch	PARSE	IAMB
$(\sigma\sigma)(\sigma\sigma)$	3syll	ŏŏŏ	$\breve{\sigma}(\acute{\sigma}\sigma)$	W			L	W
σσσσσ	3syll	ŏŏŏ	$(\sigma \acute{\sigma}) \breve{\sigma}$		W		L	W
$(\sigma\sigma)(\sigma\sigma)(\sigma\sigma)$	1syll	$\breve{\sigma}$	$(\acute{\sigma})$			W	L	W
ϭϭϭϭϭϭ	2syll	$(\acute{\sigma}\sigma)$	$\breve{\sigma}\breve{\sigma}$				W	L

- In odd-syllable forms, cannot satisfy ${}^*\breve{\sigma}F$ or ${}^*F\breve{\sigma}$ with binary feet
- Any unary feet violate TROCH
- In even syllable forms, full satisfaction of PARSE anything less incurs violations of higher ranked constraints

- Sour grapes-like stress pattern from markedness constraints only
- Generated by SL constraints, pattern is properly regular
- SL patterns are not closed under optimization

Star Free?

- Sour grapes pattern discussed here is regular (see Appendix); can also show is not Star Free (McNaughton & Papert 1971, (SF))
- Natural language stress patterns overwhelmingly SF (Heinz 2009; Rogers et al. 2013)
- SF higher-level complexity class than SL, supports claim of lack of closure under optimization

- Alphabet change: $\Sigma = \{(,),\sigma\}$
- Before distinguished between stressed, unstressed, unparsed syllables – important in generating specific pattern, not necessary for studying its general properties

• Sour grapes-like language as a stringset:

$$L = \{\sigma \\ (\sigma\sigma) \\ \sigma\sigma\sigma \\ (\sigma\sigma)(\sigma\sigma) \\ \sigma\sigma\sigma\sigma\sigma \\ (\sigma\sigma)(\sigma\sigma)(\sigma\sigma) \\ \sigma\sigma\sigma\sigma\sigma\sigma\sigma...\}$$

- This L is not star free

Theorem 1(McNaughton & Papert 1971) A language L is Star-Free iff it is non-counting, that is, iff there exists some n > 0 such that for all strings u,v,w over Σ , if $uv^n w$ occurs in L then $uv^{n+i}w$, for all $i \geq 1$, occurs in L as well.

- $\exists n \; \forall i \text{ such that } uv^n w \in L \to uv^{n+i} w \in L$
- Find two classes of counter-examples one for odd n and one for even n and show that any even or odd number n (any integer) will fail the requirements of the theorem
- Prove that the sour grapes pattern is fully regular
- No string $\sigma\sigma\sigma^n$ for even n, can use as target for $uv^{n+i}w$

Odd $n, i = 1, v = \sigma$

• Can construct same argument for even n (see Appendix)

- It is not the case that for all $i \ge 1$, there is an odd n or even n such that if uv^nw is a string of L then $uv^{n+i}w$ is a string of L for all $i \ge 1$
- Proves that Thm. 1 does not hold for the sour grapes-style pattern
- Proves that this pattern is not SF and so is properly regular

Discussion

- A system of SL constraints that produced a fully regular pattern
- Pattern was a novel sour grapes-type pattern in stress
- What happens with strictly piecewise constraints? Still CNL logic but adds precedence (non-local)
 - ALIGN-type constraints? Is e.g. $ALIGN(F,R,Pwd,R,\sigma)$ writeable as SP constraint \neg)... σ ...]_{ω} and does this produce things like the *Midpoint Pathology* (Eisner 1997b; Hyde 2012)
- What is the typology of CDLs with other levels of logic?

Thanks!

Thanks to all viewers and all involved in production, particularly Adam Jardine and Bruce Tesar.

- Top path only accepting state after a binary foot has been read
- Bottom path only accepting state after an odd number of syllables and no foot boundaries have been read

Appendix: Not Star Free, Even n

Even $n, i = 1, v = \sigma$

	$uv^nw \in L$	\rightarrow	$uv^{n+i}w \in L$
n			
2	σσσσσ		$\sigma\sigma\sigma\sigma\sigma\sigma\sigma\notin L$
4	σσσσσσσσ		$σσσσσσσσσ \notin L$
6	σσσσσσσσσσ		$σσσσσσσσσσσ \notin L$
		•	

References

- Buccola, B. (2013). On the expressivity of Optimality Theory versus ordered rewrite rules. In *Proceedings of Formal Grammar* 2012 and 2013, vol. 8036 of *Lecture Notes in Computer Science*, (pp. 142–158). Berlin: Springer-Verlag.
- de Lacy, P. (2011). Markedness and faithfulness constraints. In The Blackwell Companion to Phonology. Blackwell.
- Eisner, J. (1997a). Efficient generation in primitive Optimality Theory. In *Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics (ACL)*, (pp. 313-320). Madrid. URL http://cs.jhu.edu/ jason/papers/#eisner-1997-acl
- Eisner, J. (1997b). What constraints should OT allow? Talk handout available online (22 pages), Linguistic Society of America (LSA).
- Eisner, J. (1997c). What constraints should OT allow? Talk handout, Linguistic Society of America, Chicago. ROA#204-0797. Available at http://roa.rutgers.edu/.
- Frank, R., & Satta, G. (1998). Optimality theory and the generative capacity complexity of constraint violability. *Computational linguistics*, 24, 277–299.
- Heinz, J. (2009). On the role of locality in learning stress patterns. *Phonology*, 26(2), 303–351.
- Hyde, B. (2012). Alignment constraints. NLLT, 30, 789–836.
- Jardine, A. (2016). Computationally, tone is different. *Phonology*, 33(2), 385–405.
- Jardine, A., & Heinz, J. (2016). Markedness constraints are negative: an autosegmental constraint definition language. *Proceedings of the 51st CLS*.
- McCarthy, J. (2010). Autosegmental spreading in optimality theory. In *Tones and features*, (p. 195âÅŞ222). Berlin & Boston: De Gruyter Mouton.
- McCarthy, J. J. (2003). OT constraints are categorical. ROA-510.

McCarthy, J. J., & Prince, A. (1993). Generalized alignment, (pp. 79–153). Dordrecht: Springer Netherlands.

McNaughton, R., & Papert, S. (1971). Counter-Free Automata. MIT Press.

Padgett, J. (1995). Partial class behavior and nasal place assimilation. In *Proceedings of the 1995 Southwestern Workshop on Optimality Theory (SWOT)*, (pp. 145–183). Tuscon: Department of Linguistics, University of Arizona.

Potts, C., & Pullum, G. K. (2002). Model theory and the content of OT constraints. *Phonology*, 19, 361–393.

Prince, A., & Smolensky, P. (1993). Optimality theory: constraint interaction in generative grammar. Ms, Rutgers University & University of Colorado, Boulder.

Prince, A., Tesar, B., & Merchant, N. (2007-2017). OTWorkplace. https://sites.google.com/site/otworkplace/.

Riggle, J. (2004). Generation, Recognition, and Learning in Finite State Optimality Theory. Ph.D. thesis, UCLA.

Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., & Wibel, S. (2013). Cognitive and sub-regular complexity. In G. Morrill, & M.-J. Nederhof (Eds.) Formal Grammar, (pp. 90–108). Berlin, Heidelberg: Springer Berlin Heidelberg.

Wilson, C. (2003). Analyzing unbounded spreading with constraints: marks, targets, and derivations.

Wilson, C. (2006). Unbounded spreading is myopic.