
Computational Restrictions on Iterative Prosodic Processes

1. Contribution. Here we describe computational restrictions on the computation of iterative
phonological processes involving stress, epenthesis, and syllabification. We show that while these
processes are fundamentally local, fitting the typology of other computational work, they require
additional computational resources. We formulate this description via logical transductions (Cour-
celle, 1997), and show that using Least Fixed Point operators allows the iterativity to proceed
without quantification, a necessary and sufficient restriction characteristic of the computational
landscape of local functions (Chandlee and Jardine, 2019).
2. Locality of syllabification. Strother-Garcia (2019) demonstrates that syllabification processes
are fundamentally local (in a strict mathematical sense) in Moroccan Arabic (MA) and Imdlawn
Tashlhiyt Berber (ITB). To identify syllabic nuclei, for example, it suffices to compare each segment
to its predecessor and to the 2 segments that follow it—a ‘window’ of size 4. Crucially, the logical
formulas used for syllabification in ITB and MA lack quantification (via ∃ or ∀) and are said to
be quantifier-free (QF). They depend only on local information in the input string, corresponding
to input strictly local functions (ISL; Chandlee, 2014). This contrasts with constraint-interaction
accounts (e.g. Prince and Smolensky, 1993) where the entire word must be considered (global
evaluation), obfuscating the fact that the process is local.
3. QFLFP.While ISL functions suffice for many phonological processes, in some cases computation
depends on information in the output string. This includes iterative processes (?Chandlee et al.,
2015). Consider the mapping in (1):

(1) baaa 7→ bbbb

All a’s following a b are outputted as a b. Such iterative spreading is not ISL because the trigger for
assimilation can be separated from a target by a potentially unbounded number of input elements.
Any attempt at a QF definition for this mapping fails because it cannot identify all input positions
that could potentially be output as b when the process is unbounded. However, the mapping is
local in the output – an input symbol is rewritten as b when it is immediately preceded by a b
in the output string. Such iterative output-oriented processes can be described by extending QF
logic with least fixed point operators (LFP; Libkin, 2004). QFLFP logic enables us to write simple
recursive definitions of predicates. Rather than present the full formalism, we focus on how these
recursive formulas capture a range of phonological patterns while preserving a notion of locality
in the output. Thus, we use implicit definitions of predicates (Rogers, 1997), whereby a predicate
recursively refers to itself. A definition for (1) is as follows:

(2) b′(x)
d
= b(x) ∨ b′(p(x))

Given an input element x, it is mapped to a b in the output when it is a b in the input or it is
preceded by a b in the output. Using (1) as an example, the first a will follow a b in the output,
and so it is mapped to b. This means that the second a now follows a b, and so it is also mapped
to b, and so on. The definition in (2) applies recursively to all elements following a b, but does so
in a way that is local to the output – the transduction only need look one position to the left to
determine output b labels.
4. QFLFP and Phonological Iterativity Prosodic processes tend to be phonologically iterative.
We go through some case studies and show that they are QFLFP.
4.1 Iterative stress: QFLFP logic allows for intuitive definitions of iterative stress assignment.
For example, Murinbata (Street and Mollinjin, 1981) applies stress to every other syllable beginning
with the initial syllable. It is described by the following transduction:

(3) σ́(x)
d
= first(x) ∨ σ́(p(p(x))) input-output map: σσσσσσσ 7→ σ́σσ́σσ́σσ́

1



Computational Restrictions on Iterative Prosodic Processes

The first element in a string receives stress. Further stresses are placed on those elements that have
a stressed syllable two to the left in the output string. This applies recursively.
4.2 Iterative syllabification and epenthesis: A classic case for iteration comes from how
different Arabic dialects choose different epenthesis sites for consonant clusters. In a 3-C cluster,
a vowel is inserted after C1 in Iraqi, and C2 in Cairene. In a 4-C cluster, both dialects insert a
vowel after C2. Itô (1989) analyzes these facts as via directional syllabification. Iraqi syllabifies
right-to-left, while Cairene left-to-right. A vowel is added based on a CVC template.

Iraqi <katab-t-l-u> <katabt>.lu. <kata>.bit.lu. <ka>.ta.bit.lu.. .ka.ta.bit.lu.
(R-to-L) <katab-t-l-ha> <katabtl>.ha. <katab>til.ha. <ka>tab.til.ha. .ka.tab.til.ha.
Cairene <katab-t-l-u> .kat.<abtlu> .ka.tab.<tlu> .ka.tab.til.<u> .ka.tab.ti.lu
(L-to-R) <katab-t-l-ha> .kat.<abtlha> .ka.tab.<tlha> .ka.tab.til.<ha> .ka.tab.til.ha

Computationally, iterative epenthesis is QFLFP. Below, we provide QFLFP transductions for Ara-
bic. The functions L′(x) and R′(x) determine what should be the left- and right-edges of syllables
before resyllabification. Resyllabification is only apparent in left-to-right parsing.

R-to-L L′(x)
d
= [C(x) ∧ V (s(x))]∨ select a C in CV context

[C(x) ∧ C(s(x)) ∧ L(s(s(x)))] select a C in CC[L context
i′(x2)

d
= C(x) ∧ L(x) ∧ C(s(x)) add V in [LC_C

L-to-R R′(x)
d
= [C(x) ∧ V (p(x))]∨ select a C in VC context

[C(x) ∧ C(p(x)) ∧R(p(p(x)))] select a C in ]RCC context
i′(x2)

d
= C(x) ∧ C(s(x)) ∧R(s(x)) add V in C_C[R

s(x) returns the successor of x, while p(x) returns the predecessor. We illustrate with right-to-left
and left-to-right syllabification for /katab-t-l-u/. The former yields the Iraqi form [ka.ta.bit.lu]
while the latter yields the Cairene form [ka.tab.ti.lu].

Input k a t a b t l u k a t a b t l u
L′ is true at... R′ is true at...
Iteration 0 3 3 3 3 3

Iteration 1 3 3 3 3 3 3 3

Interim Output: kL a tL a bL t lL u k a tR a bR t lR u
i′(x2) 3 3

Output: k a t a b i t l u k a t a b t i l u

Conclusion. QFLFP provides a necessary, but sufficiently limited extension to previous methods
in computational phonology. We speculate that other prosodic processes at different scales of repre-
sentation also possess such restrictions. Moreover, the fact that iterative processes are describable
with QFLFP reinforces the view that locality lies at the heart of phonological processes.
References: [1] Chandlee, J. (2014). Strictly Local Phonological Processes. Ph. D. thesis, University of Delaware, Newark, DE. [2] Chandlee, J., R. Eyraud,
and J. Heinz (2015). Output strictly local functions. In 14th Meeting on the Mathematics of Language, pp. 112–125. [3] Chandlee, J. and A. Jardine (2019,
July). Quantifier-free least fixed point functions for phonology. In Proceedings of the 16th Meeting on the Mathematics of Language, Toronto, Canada, pp.
50–62. Association for Computational Linguistics. [4] Courcelle, B. (1997). The expression of graph properties and graph transformations in monadic second-
order logic. In G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by Graph Transformations, pp. 313–400. World Scientific. [5] Itô, J.
(1989). A prosodic theory of epenthesis. Natural Language & Linguistic Theory 7(2), 217–259. [6] Libkin, L. (2004). Elements of Finite Model Theory. Berlin:
Springer-Verlag. [7] Prince, A. and P. Smolensky (1993). Optimality Theory: Constraint interaction in Generative Grammar. Malden, Mass: Blackwell.
[8] Rogers, J. (1997). Strict lt2 : Regular :: Local : Recognizable. In C. Retoré (Ed.), Logical Aspects of Computational Linguistics: First International
Conference, LACL ’96 Nancy, France, September 23–25, 1996 Selected Papers, pp. 366–385. Berlin, Heidelberg: Springer Berlin Heidelberg. [9] Street, C. S.
and G. P. Mollinjin (1981). The phonology of murinbata. Australian phonologies: Collected papers, 183–244. [10] Strother-Garcia, K. (2019). Using Model
Theory in Phonology: A Novel Characterization of Syllable Structure and Syllabification. Ph. D. thesis, University of Delaware.

2


